

"Remote Sensing information services to support irrigation management: 40 years of evolution"

"Massimo Menenti"

Aerospace Information Research Institute (AIR) Chinese Academy of Sciences (CAS)

ongreso Internacional Agua para el Futuro - Mendoza, Argentina 23 - 24 /11/2023

Very early experiments

The dawn of remote sensing and irrigation management: Mendoza 1981 – 1985

INTERNATIONAL CONFERENCE ON USE OF COMPUTERS IN SCIENTIFIC AND TECHNICAL RESEARCH * 24 - 29 APRIL 1989 * UNIVERSIDAD DE MENDOZA * MENDOZA - ARGENTINA.

DIGITAL ANALYSIS OF SATELLITE DATA AND NUMERICAL SIMULATION APPLIED TO IRRIGATION WATER MANAGEMENT BY MEANS OF A DATABASE SYSTEM

T.N.M. Visser and M. Menenti The Winand Staring Centre for Integrated Land, Soil and Water Research P.O. Box 125, 6700 CA Wageningen, The Netherlands

J.A. Morabito and A. Drovandi Instituto de Ciencia y Technica Hidricas, Casilla de Correo 6, 5500 Mendoza, Argentina

Early need 1978: how to estimate and locate the non irrigated fields in Mendoza? How large was the difference with the area having water rights? Early need 1985: how to estimate and map

crop water requirements?

Congreso Internacional Agua para el Futuro - Mendoza, Argentina 23 - 24 /11/2023

HERRAMIENTAS PARA LA GESTIÓN FUTURA DEL AGUA **Early european projects**

1985 – 2005: STD1, STD2, STD3, FP4

SDT2: Watershed hydrology and irrigation water management

FP4 ASTIMWR 1997 - 1999:

Water managers can find on the software market a very wide choice of 'horizontal' products that allow expert customer to perform a huge amount of GIS operations. Nevertheless, water managers request 'vertical' products, with few functionalities, tailored to the routine water problems and easy to use by their technicians.

System design: PC-based Visual Basic User Interface (UI) to link data with the Integrated Land and Water Information System' (ILWIS) through Dynamic Data Exchange (DDE)

The connection Wageningen – Mendoza – Albacete: crop water requirements, actual ET, irrigation performance Congreso Internacional Agua para el Futuro - Mendoza, Argentina 23 - 24 /11/2023

Application of Space Techniques to the Integrated Management of river basin Water Resources

HERRAMIENTAS PARA LA GESTIÓN FUTURA DEL AGUA 1985 – 2005: STD1, STD2, STD3, FP4

ASTIMWR: A very important component of the system was the meta database in which all information on the capture, processing and output of data analysis is maintained.

- Loading into the system of the data sets.
- The conversion of these data to the formats of the ASTIMwR system required a carefully planned procedure
- The data base administrator had to control the quality of the data before loading.

Application of Space Techniques to the Integrated Management of river basin Water Resources

Congreso Internacional Agua para el Futuro - Mendoza, Argentina 23 - 24 /11/2023

From satellite data to HEP water information (TEP family)

Satellite data needs to be processed to obtain water information Data quality and realiability is a main requirement from users

Main characteristics of HEP satellite data

Spatial Resolution, Temporal Resolution and Accuracy shall be adequate for water resource management applications

Variables		EO mission	Time	Spatial	Accuracy
			resolution	resolution	
Water Quality			2 d		
	Surface temperature	Sentinel 3 / SLSTR	1d (from	1 km	0.3 K
			2017)		
	Total Suspended	S2/S3	1-8 d	10-500 m	20%
	Matter	Landsat 7/8			
		MODIS A/T			
	Chlorophyll-a	S2/S3	1-8 d	10-500 m	30%
		Landsat 7/8			
		MODIS A/T			
	Total Organic Carbon	S2/S3	2-8d	10-300m	50%
		Landsat 7/8			
	Cyanobacteria	S2/S3	2-8 d	10-300 m	False detection
		Landsat 7/8			25%
	Harmful algae bloom	S2/S3	2-8 d	10-300 m	False detection
	indicator	Landsat 7/8			25%
Soil Moisture		SMOS/	2-3 d	1 km	0.05 m3/m3
		SMAP/			
		AMSR-2/			
		ASCAT			
Water Extent		Sentinel-1A	12 d	5 - 20 m	1 dB
		Sentinel-1B	6 d (from		
			2016)		
		Sentinel-3	1 d	1 km	95%
Water Level		CryoSat -2/	30 d	300 m	10 cm
		Sentinel -3A/	13.5 d (from		
		Sentinel -3B	2017)		
Snow Water Equivalent		SSMIS/ AMSR2	1 d	2.5 km	30 mm
Evapotranspiration		AVHRR/MODIS/S3	1 d	5 km	85%

6

Selection of input data

Default area selected is Niger River wide area

Community Sharing (2)

8

MOSES products and services

HERRAMIENTAS PARA LA GESTIÓN FUTURA DEL AGUA

MOSES on a virtual machine

MOSES on a virtual machine

HERRAMIENTAS PARA LA GESTIÓN FUTURA DEL AGUA

MOSES on a virtual machine

Concluding remarks

- D Platforms developed to support specific applications vs. Google Earth Engine
- Remote access to data and algorithms
- □ Validation of algorithms
- □ Quality assurance
- Well documented procedures

"Massimo Menenti"

